
COMMON-SENSE SUPPORT FOR AUTONOMOUS AND ROBUST DECISION MAKING

Lionel Daniel and Valérie Roy

Applied Mathematics Centre, Mines ParisTech, 06904 Sophia Antipolis Cedex, France

ABSTRACT

Future space science mission will involve unmanned
spacecrafts performing in hazardous environment at far
distance from Earth. We therefore theoretically address
the problem of making autonomous and robust decisions
wrt inconsistent and uncertain information. To achieve
such decisions, we propose to equip a spacecraft with
the paraconsistent probabilistic reasoning, which is a
new technique to infer information from inconsistent and
probabilistic knowledge bases. This technique satisfies
several principles indented to define the common sense.
We also propose to design the programmed spacecraft be-
haviours in a synchronous language; such language are
utilised to develop, verify, and certify safety-critical em-
bedded system. By injecting some common sense into
decision systems, we hope to make them more trustwor-
thy.

Key words: common sense, decision making, paraconsis-
tent probabilistic reasoning.

1. INTRODUCTION

The success of future space missions will rely on the
spacecraft aptitude for making reliable decisions. In this
paper, we thus propose a methodology for onboard deci-
sion making, focused on spacecraft autonomy. This theo-
retical methodology, depicted in Fig. 1, is twofold. On
earth, space engineers specify the deterministic space-
craft behaviours. Aboard, these uploaded behaviours
conduct activities according to sensory data and some
common sense.

After sketching the spacecraft behaviours programming
performed by engineers on Earth, we introduce the space-
craft decision process that manages these behaviours
aboard. Then, in section 2, we provide a formalisation
for the sensory data: the knowledge base. Finally, we de-
fine the paraconsistent probabilistic reasoning as a set of
tools for knowledge bases, and we argue that they provide
autonomous and robust decision making.

Figure 1. Methodology for robust decision making.

1.1. Spacecraft behaviours design

Firstly, on earth, space engineers specify the determinis-
tic spacecraft behaviours. Behaviours represent tasks to
realise wrt the current situation. In the following exam-
ple, behaviour b3 executes sub-behaviours b1 and b2 con-
ditionally to c1, which depends on the probability that
event e1 occurs in the current situation:
e1: “camera-1 detects life on Mars”
b1: “inform ground centre about the probability of e1”
b2: “focus camera-2 on camera-1’s target”
c1: “probability of e1 is higher than 80%”
b3: “if (c1) then (suspend low priority behaviours and

execute simultaneously b1 and b2; when b1 and b2
terminates, resume low priority behaviours)”

Notice that behaviour b3 is deterministic iff c1 is either
true or false, ie iff the probability of e1 is computable.

A behaviour, together with its set of safety properties, is
written in a synchronous programming language. Such
“languages have been designed to allow the unambiguous
description of reactive, embedded real-time systems. The
common foundation for these languages is the synchrony
hypothesis, which considers computations to not take any
time. This abstraction allows to separate the concerns
functionality and real-time characteristics, and thus facil-
itates the design of complex embedded systems”1. In this
paper, we propose to use SCADE Suite2, which is an Inte-

1This description is excerpted from the SYNCHRON’2009 work-

shop website: http://www.dagstuhl.de/09481
2SCADE Suite is a trademark of Esterel Technologies SA. All rights
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Figure 2. SCADE Suite screenshot showing the design,
the verification, and the compilation of a behaviour.

grated Development Environment to design, verify, then
generate certified3 code. It provides graphical and textual
formal languages, both with data-flow and control-flow
synchronous programming styles. These languages com-
prise instructions to modularly parallelise, sequentialise,
suspend, resume, and abort behaviours. The SCADE
Suite screenshot in Fig. 2 shows 1) the list of nodes,
where a node represents a behaviour or a property, 2) a
behaviour, written in both data-flow (yellow blocks) and
control-flow (blue and pink blocks), 3) a property that a
behaviour should satisfy, 4) the model checking of the
property, 5) the result of the verification, and 6) the be-
haviour compilation. The forbidden sign at the bottom
left corner indicates that the behaviour does not satisfy
the property. In which case, a scenario leading to the
violation of the property is generated, helping thus en-
gineers to debug the behaviour. Finally, the behaviour is
uploaded aboard the spacecraft into a repository calledB.

1.2. Behaviours driven by common sense

Once onboard, behavioursB determine the spacecraft de-
cisions, wrt the current situation depicted by sensors. Be-
cause of the hazardous spacecraft environment, sensory
data are tainted with uncertainty; eg, the processing of
the camera-1 images could lead to uncertain event, eg
“probability of e1 is lower than 30%”; such events may
be imprecise due to missing or partial sensory data result-
ing from sensor failure or power loss. Uncertain events
are stored into a knowledge base K , which tends to be
inconsistent due to the multi-sensor context. Thus, the
spacecraft must act wrt an imprecise, uncertain, and in-
consistent knowledge base. In section 3.1, we will pro-
pose a process, called IME, that infers from K a precise
and probabilistically consistent world model ω̂. In addi-
tion to IME, we will define several principled measures µ

reserved. See http://www.esterel-technologies.com/
3Code generation qualifiable for DO-178B up to Level A, certifiable

for IEC 61508 certified at SIL 3 and EN 50128 certified at SIL 3/4.
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Figure 3. Storage box with sliding walls; the compart-
ments capacity is adjusted to the amount of soils.

for knowledge bases. These measures enable engineers to
specify behaviours such as “if (µimpr(Kcamera-1) ≥ 80%)
then (execute b2)”, which commands to the camera-2 to
focus on camera-1’s target when camera-1 provides the
spacecraft with too imprecise data. Thus, the spacecraft
actions are computed by evaluating behaviours B wrt to
IME(K) and the measures: B(ω̂, µ). The key for au-
tonomous and robust decision making resides in the com-
mon sense underlying IME and µ.

2. PROBABILISTIC KNOWLEDGE REPRESEN-
TATIONS

In this section, we define the probabilistic language,
named K, in which the uncertain events are expressed.
These events constrain a probability distribution on sen-
tences of a propositional language. Then we define a
knowledge base as a set of such constraints. We also
define the consistency of a knowledge base as the sat-
isfiability of its set of constraints. Finally, we introduce
a more general knowledge representation to deal with in-
consistencies. But first, we motivate our choice towards
probabilistic reasoning through voting theory.

2.1. Motivating example: voting theory

Voting theory is a theory of electing a societal preference
from individual preferences. In the following example,
a rover will have to achieve a consensus about resource
allocation from the possibly conflicting preferences of its
embedded agents.

Suppose a rover is scouting a surface for soil sampling.
This rover embeds several scientific agents, ie computer
programs, that together decide on the amount of each
soils to carry back to the main station where further anal-
ysis will be performed. During the journey, the rover
stows the soils in a storage box having sliding walls (see

http://www.esterel-technologies.com/


Fig. 3): this allows to adjust the capacity of each com-
partment to the amount of a collected soil. The agents
have different interests, eg, one agent focuses on organic
chemistry, whereas another agent focuses on rare soils.
Due to the finite capacity of the storage box, these in-
terests may be conflicting, eg, the latter agent may want
to carry back a maximum amount of a rare soil, even if
this soil is much less inspiring from the organic stand-
point than an abundant soil. Notwithstanding the possi-
bly conflicting agents’ interests, the rover must achieve a
consensus about the capacity of each compartment of the
storage box; we formally state this problem as follows.

A rover embedding I ∈ N agents stows soil samples in
J ∈ N compartments { α1, α2, . . . , αJ } of a box with
sliding walls. A space distribution ω is a function that
maps each compartment to its capacity and satisfies these
two assumptions: (A1) the box volume is 1 cubic decime-

tre, ie 1 =
∑J

j=1 ω(αj), and (A2) each compartment ca-

pacity is positive, ie ∀j ∈ { 1, 2, . . . , J } , ω(αj) ≥ 0.

Each agent i expresses a set Ki of wishes for the space
distribution ω. For example, i may wish to allocate at
least twice more space to soil α1 than to soil α2, ie
ω(α1) ≥ 2 ∗ ω(α2), and may wish that the total amount
allocated to α1 andα2 is within 0.2 and 0.3 cubic decime-
tre, ie 0.2 ≤ ω(α1) + ω(α2) ≤ 0.3; definition 3 will
formalise the wishes. Besides, the rover affixes to each
agent i a reliability degree σi ∈ R

+, which tends towards
0 when the rover tends to consider i as reliable; eg, i will
be labelled as reliable if, in case the rover had fulfilled
its wishes without considering other agents’ wishes, its
wishes would have enabled a high science return.

Thus, the rover must implement a voting system I
yielding the space distribution ω̂ that best conciliates
the wishes Ki of each agent i, according their reli-

ability σi and some common sense; formally, ω̂
def
=

I[σ1,...,σI ](∪I
i=1Ki), where I must satisfy several prin-

ciples intended to define the common sense. By inter-
preting assumptions (A1) and (A2) as the Kolmogorov’s
axioms for probability, space distributions can be identi-
fied as probability distributions (these terms will be de-
fined in section 2.2). We therefore take the probabilistic
standpoint to define I as an inference process, of which
a definition will be given in section 3.1; this motivates us
to study the paraconsistent probabilistic reasoning.

2.2. Probabilistic language

Let Θ be a propositional language generated by Θ ::=
(Θ ∧ Θ) | (Θ ∨ Θ) | (¬Θ) | var, where var is a finite
set of propositional variables being either true or false,
and where logical connectives ∧, ∨, and ¬ have their re-
spective classical semantic4 and, or, and not. These vari-

4Classical semantic

θ φ θ ∧ φ θ ∨ φ ¬θ

false false false false true

false true false true true

true false false true false

true true true true false

ables represent the application domain of the spacecraft
sensors, like event e1 in the introductory example of sec-
tion 1.1. In the sequel, unless explicitly stated, Θ is sup-
posed fixed. Also, the propositions, usually noted θ, φ, or
ψ, are supposed belonging to Θ. Let |= θ denote a tau-

tology θ. Furthermore, let αΘ
def
= { αj | j = 1, 2, . . . , J }

denote the set of minterms5 of Θ, where J
def
= 2|var| with

|var| being the number of propositional variables. Also,

let αθ
def
= { αj | |= (¬αj ∨ θ) } denote the minterms of

a proposition θ. Finally, each proposition θ is supposed
to be in the canonical disjunctive normal form, ie θ =
∨

α∈αθ
α.

Definition 1. Kolmogorov’s axioms for probability are:
(P1) if |= θ then ω(θ) = 1;
(P2) if |= ¬(θ ∧ φ) then ω(θ ∨ φ) = ω(θ) + ω(φ),

where ω is a function from Θ to [0:1], θ, φ ∈ Θ.

Definition 2. A probability distribution ω is a function
that satisfies Kolmogorov’s axioms for probability. We
denote by ΩΘ, or by Ω when it is unambiguous, the set
of probability distributions underlain by a given proposi-
tional language Θ.

Notice that the minterms of Θ are mutually exclusive,
ie |= ¬(αi ∧ αj) for any two distinct minterms αi and
αj . Since θ is a disjunction of minterms, ω(θ) equals
ω(

∨

α∈αθ
α) by definition, and equals

∑

α∈αθ
ω(α) by

axiom (P2). Thus, a probability distribution ω can be
seen as a function from αΘ to [0:1], hence as a point
[ω(α1);ω(α2); . . . ;ω(αJ)] in an Euclidean space of di-
mension J such that its jth coordinate ωj ∈ [0:1] equals
ω(αj). Furthermore, [6, pages 13–15] shows that a point

ω ∈ R
J in an Euclidean space of dimension J denotes

a probability distribution iff ω ≥ ~0 and6 1 =
∑J

j=1 ωj .

Thus, writing Ω ⊂ R
J makes sense.

In this paper, we identify knowledge with a possibly un-
satisfiable multiset of constraints on a probability dis-
tribution ω. Each constraint c, ie each item of knowl-
edge, is an inequality with the following general form:
b ≥ f(ω), where b ∈ R and f : D 7→ R such that
Ω ⊆ D ⊆ R

J . If f is a linear function, ie if c has the
form b ≥ [a1, a2, . . . , aJ ] ∗ω, where aj are real numbers

such that 1 =
√

∑J
j=1 aj

2, then c is said to be a linear

constraint.

Definition 3 (Linear knowledge base). A linear knowl-
edge base is a multiset of linear constraints. We denotes
by K the set of linear knowledge bases.

Notice that a linear knowledge base K ∈ K is simply a
matrix inequalityK.B ≥ K.A ∗ ω, where K.B and K.A

5A minterm is a sentence of a propositional language. A minterm

has the form
V

v∈var ±v, where var is the set of propositional variables

and where ±v means either ¬v or v.
6Remember the assumption (A1) 1 =

PJ
j=1

ω(αj ), and (A2) ∀j ∈

{ 1, 2, . . . , J } , ω(αj ) ≥ 0 in the motivating example about voting

theory at section 2.1 on the previous page.



are defined as follows, and where I ∈ N is the number of
constraints:

K.B
def
=









b1
b2
...
bI









K.A
def
=









a1,1 a1,2 . . . a1,J

a2,1 a2,2 . . . a2,J

...
...

. . .
...

aI,J aI,2 . . . aI,J









Despite their simplicity, linear knowledge bases gener-
alise widely used bases such as sets of propositions or
sets of conditional probabilities.

Definition 4 (Models of K). A model of a knowledge
baseK is a probability distribution satisfying all the con-
straints in K . We denote by ΩK and Ωc the set of models
of K and {c}, respectively, where c is a constraint.

Definition 5 (Consistency). A knowledge base K is con-
sistent iff ΩK 6= ∅, ie, iff there exists a probability distri-
bution satisfying all the constraints in K; otherwise, K
is said to be inconsistent.

2.3. Blur probabilistic representation

In this section, we present a more general probabilistic
representation of knowledge: a candidacy function. As
complex numbers were a new representation of numbers
to deal with negative square roots, we propose candidacy
functions as a new representation of knowledge to deal
with paraconsistent reasoning.

Definition 6. A candidacy function C is a function from
Ω to [0:1] such that C(ω) = 1 means ω is a candidate for
representing the real world.

Definition 7 (Best candidates wrt C). The non-empty set
of probability distributions that are the best candidates
for representing the real world, wrt a candidacy function
C, is defined as follows:

Ω̂C
def
= argmax

ω∈Ω
C(ω)

In this paper, we only consider candidacy functions sat-
isfying the following principle called concession, which
talks about knowledge fusion, ie merging two candidacy
functions.

a© Concession: A candidacy function C is conceding
iff, for any probability distribution ω not dismissed by
C′ from representing the real world, the candidacy func-
tion C ∗C′, resulting from the merging of C with another
candidacy function C′, does not dismiss ω.

if C′(ω) > 0 then (C ∗ C′)(ω) > 0

We do not give further insights into candidacy functions
in this paper because our focus is on linear knowledge
bases. We nevertheless provide the construction of a can-
didacy function CK corresponding to a given knowledge

0

1

−2 0 2

x

h1.5(x)
h1.0(x)
h0.5(x)

step(x), h0(x)

Figure 4. Half-Gaussian cumulative distribution function

base K . We require of CK to satisfy several properties.
Firstly, CK(ω) = 1 iff ω is a model of K , otherwise,
CK(ω) is intended to represent the degree of satisfiabil-
ity of K . Secondly, since K is a multiset of constraints,
we assume CK(ω) =

∏

c∈K C{c}(ω), ie CK only de-
pends on the degree of satisfiability of each constraint
c ∈ K . Thirdly, remember that a linear constraint c has
the form b ≥ [a1, a2, . . . , aJ ]∗ω. Also, notice that equal-
ity b = [a1, a2, . . . , aJ ]∗ω denotes a hyperplane in an Eu-
clidean space of dimension J . This hyperplane separates
the probability distributions satisfying c from those that
do not. We thus suppose that, from two probability dis-
tributions not satisfying c, the one most satisfying c is the
closest to the hyperplane, wrt the Euclidean distance. We
define the normalised signed Euclidean distance between
a probability distribution ω and the hyperplane of c as fol-

lows: Dω
c

def
= (b− [a1, a2, . . . , aJ ] ∗ ω) ∗

√
J . Finally, we

interpret c as a random polynomial with a random vari-
able b whose cumulative distribution function hσc

is half-
Gaussian with a standard deviation σc ∈ R

+:

CK(ω)
def
=

∏

c∈K

hσc
(Dω

c )

where hσ is defined as follows:

hσ(x)
def
=

{

1 + erf
(

x

σ
√

2

)

if σ > 0 and x < 0,

step(x) otherwise.

and where the error (erf) and the step (step) functions are
respectively defined as follows:

erf(x)
def
=

2√
π

∫ x

0

e−t2dt step(x)
def
=

{

1 if x ≥ 0,

0 otherwise.

Notice that graphs of functions step and hσ are drawn in
Fig. 4, for several values of standard deviation σ.

We now stress two facts. Firstly, Ω̂CK
= ΩK when K is

consistent. Secondly, the construction of CK is language
invariant, ie, introducing a new variable v into the under-
lying propositional language Θ of a knowledge baseK ∈
K, yields a new language Θ′ underlying a new knowledge
base K ′ ∈ K such that ∀ω′ ∈ ΩK′ , CK′(ω′) = CK(ω),

where ω ∈ ΩK is such that ∀α ∈ αΘ, ω(α)
def
= ω′(α);

this is due to coefficient
√
J in Dω

c .



3. PARACONSISTENT PROBABILISTIC REA-
SONING

In this section, we define five tools for the paraconsistent
probabilistic reasoning. We then propose to utilise them
for achieving autonomous and robust decision making.

3.1. Inference process and measures

Let K,K ′ ∈ K be two linear knowledge bases; we sup-
pose they are underlain by a common propositional lan-
guage, but this is not a restriction since the next tools all

satisfies language invariance. Let ω̂K ∈ Ω̂CK
be a best

candidate for representing the real world, wrt CK . Our
five tools for the paraconsistent probabilistic reasoning
are:

• an inference process:

IME(K)
def
= arg max

ω̂K∈Ω̂CK

E(ω̂K)

where E is the entropy of a probability distribution:

E(ω)
def
= −

J
∑

j=1

ωj ∗ log(ωj)

• a dissimilarity measure:

µdis
L∞

(K,K ′)
def
= max

ω∈Ω
|CK(ω) − CK′(ω)|

• an inconsistency measure:

µicst(K)
def
= 1 − CK(ω̂K)

• together with its culpability measure:

µicst(c ∈ K)
def
= 1 − Cc(ω̂K)

which quantifies the amount of inconsistency
brought to a knowledge base K by an item c be-
longing to K;

• an imprecision measure:

µimpr(K)
def
= V(Ω̂CK

)

where V(Ω̂CK
) is the volume filled by the set Ω̂CK

;
informally, V intends to compute the number of
probability distributions that best represent the real

world wrt CK : the greater V(Ω̂CK
), the more im-

precise CK ;

• an incoherence measure:

µicoh(K,K ′)
def
= CK(ω̂K)∗CK′(ω̂K′)−CK∪K′(ω̂K∪K′)

which is roughly the distance between the maximal
consistency CK(ω̂K) ∗ CK′(ω̂K′) and the real con-
sistency CK∪K′(ω̂K∪K′) between K and K ′;

These five tools are principled, ie they satisfy principles.
We now present a selection of such principles that all to-
gether are intended to define the common sense.

3.2. Common sense

3.2.1. Notions of convergence

The notion of converging sequence of knowledge bases
is founded upon a metric: the Hausdorff distance.

Definition 8 (Hausdorff distance). The Hausdorff dis-
tance H of two non-empty compact (bounded and closed)
sets X and Y of points in a Euclidean space is defined as
follows, where L1(x, y) denotes the Euclidean distance
between points x and y:

H(X,Y )
def
= inf

{

δ

∣

∣

∣

∣

and
∀x ∈ X, ∃y ∈ Y, δ ≥ L1(x, y)
∀y ∈ Y, ∃x ∈ X, δ ≥ L1(x, y)

}

Jeff Paris argues in [6, pages 89–91] that H(ΩK1 ,ΩK2)
corresponds to the distance between knowledge contents
when K1 and K2 are consistent knowledge bases (and
underlain by the same propositional language). Thus, a
sequence of consistent knowledge bases κ : N 7→ K con-
verges to a consistent knowledge base K ∈ K, denoted

by limH
i→∞ κi = K , iff ∀ε ∈ R

+, ∃Nε ∈ N, ∀i ≥
Nε,H(Ωκi

,ΩK) < ε. However, when dealing with
inconsistent knowledge bases, ΩK1 or ΩK2 are empty,
hence, H can not compute their distance. Therefore,

we use Ω̂CK
instead of ΩK and we define a new metric

µdis
H (K1,K2) that is equivalent to H when dealing with

consistent knowledge bases, where [ω ⊔ r] denotes the
vertical concatenation of a vector ω with a scalar r ∈ R:

µdis
H (K1,K2)

def
= H





{

[ω ⊔CK1(ω)]
∣

∣

∣ ω ∈ Ω̂CK1

}

,
{

[ω ⊔CK2(ω)]
∣

∣

∣ ω ∈ Ω̂CK2

}





We consider that the agent’s knowledge has two levels:
an internal level (the agent’s epistemic state represented
by a candidacy function C) where the knowledge man-
agement is performed (eg: to resolve the inconsistency),
and an external level (the agent’s visible knowledge, or

exposed state, represented by Ω̂C) where a higher kind
of reasoning is realised (eg: to use an inference process).
We employ µdis

L∞
to measure the distance between two in-

ternal levels of knowledge, whereas we use µdis
H to com-

pare two external levels of knowledge. We thus obtain
two notions of convergence, one for each level.

Definition 9 (Convergence wrt µdis). A sequence
κ : N 7→ K converges to a knowledge base K ∈ K

wrt a metric µdis, denoted by limµdis

i→∞ κi = K , iff ∀ε ∈
R

+, ∃Nε ∈ N, ∀i ≥ Nε, µ
dis(Cκi

, CK) < ε.

3.2.2. Common-sensical principles

In this paper, we adhere to the proposal that reasoning
common-sensically is reasoning while applying intuitive
principles; most of these principles are underlain by ideas
coming from [6, Chapter 7]. We now present several prin-
ciples satisfied by our inference process and measures.



Principles for an inference process I In order to leg-
ibly define principles d© to j©, we shall assume that I
satisfies uniqueness and is language invariant; this lat-
ter property is a consequence of irrelevant information
principle (see c© then take K2.beliefs = ∅). Thus,
when declaring some knowledge bases underlain by some
propositional variables, eg K1 ∈ Kvars1 and K2 ∈ Kvars2 ,
we can freely substitute their respective underlying lan-
guage by a common one that possesses all their proposi-
tional variables, eg K1,K2 ∈ Kvars1∪vars2 , therefore, we
can omit the reference to their language, eg K1,K2 ∈ K.

b© Uniqueness & determinism: An inference process
should deterministically return a unique probability dis-
tribution.

c© Irrelevant information (Extension of [6, page 87]):
Entirely irrelevant information should be ignored by an
inference process. Let K1 ∈ Kvars1 and K2 ∈ Kvars2

be two knowledge bases underlain by two disjoint sets of
propositional variables, ie vars1 ∩ vars2 = ∅. Let θ1 be
a propositional sentence underlain by vars1. Then K2 is
said to be irrelevant to K1 and θ1.

(I(K1))(θ1) = (I(K1 ∪K2))(θ1)

d© Equivalence (Extension of [6, page 82]): Equal in-
formation should be inferred from equivalent knowledge
bases.

if µdis
H (K1,K2) = 0 then I(K1) = I(K2)

e© Renaming (Due to [6, page 95]): An inference pro-
cess should be insensitive to a renaming of the proposi-
tional variables. For any knowledge base K ∈ K under-
lain by n propositional variables, let π be a permutation
over the natural numbers in [1:2n]. Furthermore, when

applied to K , π is defined by π(K).Ar,c
def
= K.Ar,π(c)

and π(K).b
def

= K.b where r and c denote the rth row and
the cth column of the matrixK.A. When applied to a vec-

tor ω, π is defined by π(ω)j
def
= ωπ(j) where j denotes the

jth element of vector ω.

I(π(K)) = π(I(K))

f© Obstinacy (Extension of [6, page 90]): Additional
support for what is already known should be ignored by
an inference process.

if I(K1) ∈ Ω̂K2 then I(K1) = I(K1 ∪K2)

g© Independence (Due to [6, page 101]): The absence
of any information linking two events should be identi-
fied with the conditional independence; justifications for
this principle are given in [8]. Let L be a propositional
language having three variables v1, v2, and v3, and un-
derlying a knowledge base K defined as follows, with
a, b ∈ [0:1]:

K.beliefs
def

=

{

ω(v1) = a
ω(v2 | v1) = b
ω(v3 | v1) = c

}

The independence principle states that v2 and v3 should
be treated as conditionally independent given v1:

(I(K))(v2 ∧ v3 | v1) = b ∗ c

h© Continuity (Extension of [6, page 89]): Microscopic
changes in the knowledge base should not cause macro-
scopic changes in the inferred information. This principle
ensures a certain robustness in face of minor fluctuations
in the knowledge base.

if lim
µdis
H

i→∞ κi = K then limi→∞ I(κi) = I(K)

i© Open-mindedness (Extension of [6, page 95]): An in-
ference process should give the benefit of the doubt; this
principle is a kind of precautionary principle. Let θ be
any sentence of the underlying propositional language of
a knowledge base K .

if ∃ω ∈ Ω̂K , ω(θ) > 0 then (I(K))(θ) > 0

j© Relativisation (Due to [6, page 100]): The probabil-
ities an inference process would give if some event oc-
curred should only depend on the knowledge conditioned
by the occurrence of this event. For the sake of elegance
of the following definitions, we express the knowledge
bases in a non-normalised form. Let K,K1,K2 ∈ K,
aij , bi, a

′
ij , b

′
i, c ∈ R, k, k′, li, l′i ∈ N, θ, θi, θ

′
i, ϕ ∈ Θ,

and K
def
= { c = ω(ϕ) } with 0 < c < 1.

K1
def
=







bi =

li
∑

j=1

aij ∗ ω(θi | ϕ)

∣

∣

∣

∣

∣

∣

i = 1, . . . , k







K2
def
=







b′i =

l′
i

∑

j=1

a′ij ∗ ω(θ′i | ¬ϕ)

∣

∣

∣

∣

∣

∣

i = 1, . . . , k′







Notice that K1 expresses knowledge relatively to the oc-
currence of ϕ, whereas K2 expresses knowledge in case
ϕ does not occur. Thus, the relativisation principle states
that the probability of θ given ϕ should only depend on
K ∪K1, when K ∪K1 ∪K2 is consistent:

if ΩK∪K1∪K2 6= ∅
then I(K ∪K1)(θ | ϕ) = I(K ∪K1 ∪K2)(θ | ϕ)

The demonstration of the following characterisation the-
orem appears in [7], then has been generalised to consis-
tent polynomial knowledge bases in [9].

Theorem 1 ([6, theorem 7.9]). When deal-
ing with a consistent linear knowledge base,

ME
def
= argmaxω∈ΩK

E(ω) is the unique inference
process satisfying principles b© to j©.

Theorem 2. IME(K) = ME(K) when K ∈ K is con-
sistent, and IME satisfies principles b© to j©.



Principles for measure We only present two key prin-
ciples for measures: language invariance and continuity.

k© Language invariance: A measure µ of a knowledge
base K is language invariant iff adding a variable into the
underlying propositional language of K does not change
its value. Similarly, if µ takes two argumentsK1 andK2,
then adding a variable into the underlying propositional
language of K1 and K2 does not change its value. More
formally, let K1,K2 ∈ Kvars be two knowledge bases
underlain by a non-empty set of propositional variables
vars, and let K ′

1,K
′
2 ∈ Kvars∪{v} be the same bases as

K1 and K2 with one variable v 6∈ vars added into their
underlying propositional language.

µ(K1) = µ(K ′
1) or µ(K1,K2) = µ(K ′

1,K
′
2)

l© Continuity: Microscopic changes in the knowledge
base should not cause macroscopic changes in the mea-
sure. This principle ensures a certain robustness in face
of minor fluctuations in the knowledge base.

if lim
µdis
L∞

i→∞ κi = K
then limi→∞ µ(κi) = µ(K)
or limi→∞ µ(κi,K

′) = µ(K,K ′)

3.3. Autonomous and robust decision making

IME satisfies principles b© to j© ensuring:

• autonomy, ie decisions are taken without recourse to
humans: uniqueness (see b©) ensures that an evalu-
ation of a condition in a behaviour (see condition c1
in the example at section 1.1 on page 1) always re-
turns either true or false;

• determinism, ie decisions are explainable: determin-
ism (see b©) ensures that IME does not use any ran-
dom function, hence the evaluation of the conditions
in the behaviours are deterministic, therefore, the
whole behaviour is deterministic;

• robustness, ie decisions are robust against slight
fluctuations of sensory data: continuity (see h©) en-
sures the continuity of IME, but a value of a con-
dition in a behaviour can wobble. If this effect is
undesirable, an engineer could design more sophis-
ticated behaviours which compute spacecraft actions
by applying some continuous functions to IME(K)
(so that the spacecraft action continuously depends
on the sensory data), but in which case, the model
checker may not be able to formally verify the be-
haviour;

• fairness, ie IME equally trusts, or fairly conciliates,
each uncertain event in K: this property is ensured
by the knowledge formalisation, because K is a
multiset, and by concession (see a©), which avoid
knowledge pieces to be ignored, even when they are
inconsistent;

• backwards compatibility, ie the spacecraft decisions
are not influenced by the addition of new sensors
if these sensors provide data on new topics (hence
an decision taken before the spacecraft upgrade is
still valid): this is ensured by irrelevant information
(see c©).

• semantic analysis, ie decisions depend on the mean-
ing of K , not on the syntax: the knowledge normal-
isation and the other principles are intended to make
an inference process syntax invariant (eg, see d©
and e©).

In addition to IME, we propose in section 3.1 several
principled measurements of K . These measurements al-
low engineers to define behaviours that establish strate-
gies for:

• mission planning, by measuring the incoherence be-
tween the current situation and the mission target,
both described in terms of knowledge bases. A be-
haviour could be “if the mission target is too inco-
herent from the current situation depicted by the sen-
sors, then the spacecraft should select a more achiev-
able target”.

• tackling unexpected events, by measuring the dis-
similarity between the current situation and an ex-
pected one, both described in terms of knowledge
bases;

• self-healing, by measuring the culpability of each
sensor for making K inconsistent: spacecraft may
decide to check then repair such a sensor.

• sensors recalibration, by measuring the imprecision
and the redundancy of sensory data. For example, an
exploring spacecraft may decide to widen its sensor
coverage by decreasing the overlap of each sensor
coverage, ie by increasing the dissimilarity between
sensory data. However, when the spacecraft detects
an interesting event, it may decide to focus its sen-
sors on this event by increasing the overlap of each
sensor coverage.

3.4. Computational complexities

In the sequel, we denote by m the number of inequal-
ities in a knowledge base K ∈ Θ, and by n the num-
ber of propositional variables. The space complexity of
our knowledge representation is exponential wrt n. Be-
sides, the time complexity of our inference process IME
depends on the space complexity. Thus, in order to make
IME tractable, we are investigating techniques that expo-
nentially reduce the space complexity, like those in [2].

Space and time complexity The naive space complex-
ity of our knowledge representation is O(m ∗ 2n). The



following partitioning technique exponentially reduces
this complexity. A knowledge base can be partitioned
into p sub-bases of inequalities such that each sub-base
does not share any propositional variable with the oth-
ers. Notice that the knowledge in a partition is irrelevant
to the knowledge in another partition. This partitioning
technique is legitimate for any inference process satisfy-
ing principle c©, like IME. Hence, the space complexity
of the partitioned knowledge is only

∑p

i=1 O(mi ∗ 2ni),
with n =

∑p

i=1 ni and i = 1, . . . , p where mi and ni are
respectively the number of inequalities and propositional
variables of the ith partition. Due to the partitioning, IME
applied to a knowledge base computes p∗2 optimisations
over 2ni variables within [0:1] instead of two optimisa-
tions over 2n variables. If p is large then 2ni ≪ 2n, and
∑p

i=1 O(mi ∗ 2ni) might become a tractable space com-
plexity.

The time complexity of IME(K) relies on the time com-

plexity for maximising p times the functionE over Ω̂CKi
,

which is an maximisation of CKi
over 2ni variables with

i = 1, . . . , p, where Ki is a partition of K . We know that
CKi

is not only continuous and log-concave but also non-
smooth (see the non-smoothness of hσ in Fig. 4). Thus,

the time complexity of Ω̂CKi
is the same as maximis-

ing a concave non-smooth function over the convex set

[0:1]2
ni

constrained by the linear equality 1 =
∑2ni

j=1 ωj

(see [10]).

On bounding and approximating techniques In addi-
tion, there exist techniques to smooth out a log-concave
function (see [4]) enabling us to not only use faster opti-
misation algorithms (see [3]), but to also compute a hat
function (see [1]) that allows arbitrarily precise approxi-

mation of Ω̂CKi
. Furthermore, an easier-to-compute en-

tropy function is proposed in [5], which accelerates each
function evaluation during the optimisation process.

Tractable consensus decision making In section 2.1,
we propose to use IME for computing a consensus among
the agents about the capacity of the J compartments,
where J ∈ N must be a power of two. In this situation,
the space complexity of a knowledge base K containing
m agents’ wishes is O(m ∗ J). Thus, IME(K) may be
tractable.

4. CONCLUSION

In this paper, we introduce the paraconsistent probabilis-
tic reasoning as the only solution to a certain kind of con-
sensus decision making (see section 2.1), and a possible
solution to autonomous and robust decision making (see
section 3.3). We introduce the paraconsistent probabilis-
tic reasoning as a set of principled tools (measures and
inference process, see 3.1) that deal with possibly incon-
sistent probabilistic knowledge bases. The satisfied prin-
ciples, intended to define the common sense, are founded

upon the work in [6] that deals with consistent knowl-
edge base. To our knowledge, our principled tools are
the first to tolerate inconsistent probabilistic knowledge
bases. We also explain that, even though these tools are
usually intractable, they may be employed for consensus
decision making. In future research, we should state fur-
ther or stronger principles to characterise these tools, then
investigate tractable approximation of them, in order to
obtain a viable and sound methodology for onboard deci-
sion making.
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